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ABSTRACT 

Consider  a set A of symmetr ic  n × n matr ices  a = (a i j ) i j_<~.  Consider  

an independent  sequence (gi)i_<~ of  s t andard  normal  r andom variables, 

and let M = EsupaEA ]y~i,j<nai,jgigj]. Denote by N2(A,a) (resp. 

N~(A,a)) the  smallest  number  of  balls of radius a for the  12 norm of 

R n2 (resp. the  opera tor  norm) needed to cover A. Then  for a universal 

constant  K we have a(logN~(A,a)) 1/4 <_ KM. This inequality is bes t  

possible. We also show tha t  for 6 _> 0, there  exists a cons tant  K(6) such 

tha t  c~(log N~(A, a))  1/(2+6) _< K(6)M. 

1. I n t r o d u c t i o n  

Consider an orthogaussian sequence (g~)i<,. For a subset A of R'*, set £(A) = 

E supaEa I ~i<_n aigi]. The value of g(A) in function of the geometry of A is now 

(in principle) completely elucidated [T1]. An important early result, that  is still 

of considerable use, is as follows. 

Remark: Sudakov's minoration. Denote by N(A, a) the smallest number of 

balls in the g2 metric of radius a that are needed to cover A. Then, for some 

universal constant K0, 

(1.1) o~(log N(A, ~))1/2 < Kog(A). 
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Observe that this statement is independent of the dimension n, so is in essence 

an infinite-dimensional statement. 

Consider now a set A of n × n matrices; set 

g(2)(A) = Esupl  ~ ai,igigjl. 
a E A  i , j<_n 

In contrast with the case of g(A), little is known about the relationship be- 

tween £(2)(A) mad the geometry of A. The distribution of a Gaussian random 

variable ~,i<n aigi depends only on its variance but the structure of a chaos 

X = ~i,j<n ai,jgigj is far more complicated. Consider [[a[[2 = ( E i , j < n  _2 "tl/2 _ _ u i , j )  , 

the ~2 norm of a. Consider 

[[all" = sup I Z aijhikj : Z h~ < i,j<n i<n j<<nZ k] < 1 }  " 

This is the operator norm of a seen as an operator from R" to R"; or, equivalently 

the norm of a seen as an element of the injective tensor product R"®,R" .  Observe 

that, by Cauehy Schwarz inequality, we have Ilall, _< 11@2- It is easy to see (see 

e.g. [L-T] section 3-2 for a proof) that the parameters Ilal12, Ilall, govern the size 

of the tails of X. In particular, for some universal constant K,  we have 

(1.2) P(IIXII > t) < exp(-t2/Kllal[~) if t <_ Ilall~/llall,; 

e(l lxl l  > t) <_ exp(- t /g l la[[ , )  if t > Ilallg/llall,. 

In looking for a generalization of Sudakov's minoration for chaos, it is thus 

natural to consider both norms I1" 112 and I1" I1~. 

THEOREM 1.1: Consider a set A of n x n symmetric matrices. Denote by 
N2(A, a) (resp. N~(A, a)) the sma//est number of ball for [1. ll2 (resp. II" I[,) 

of radius a needed to cover a set A C R "~. Then, for some universal constant 
K, we have 

(1.3) ~(log N2(A, 00)  1/4 < Kt(2)(A). 

Moreover, there exists a function ~(x) such that limz--.oo ~(x)/x s = 0 for each 

> O, and such that 

(1.4) (l°g N'(A'a))l/2 < K ~(2)(A) qa ( ~(2)-(aA) ) 
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The reader must have noted the unusual exponent in (1.3); but (1.3) is optimal; 

a challenging conjecture is to know whether the term in ~0 can be removed in 

(1.4). The statement of the theorem is independent of the dimension; it is thus a 

routine to deduce from this theorem a statement on chaos processes of the form 

(Y~i,j>l ai,jgigj)a6A for A C g2(N2). 

It turns out that our proof of Theorem 1.1 makes essential use of methods 

of local theory of Banaeh spaces; thus it is natural to state it here in a finite- 

dimensional setting. Using (1.2), it is shown in [L-T] p. 327 that for some 

universal constant K,  we have 

(1.5) g(2)(A) <_ K ( ~ ( l o g N 2 ( A , ~ ) ) l / 2 d a  + ~ l o g N , ( A , a ) d a )  . 

This inequality is the best possible of its type. (Of course one can replace entropy 

conditions by the corresponding majorizing measure conditions.) The exponents, 

however are not the same as in (1.3) and (1.4). The reason is that the value of 

t(2)(A) is not determined by the structure of A for the distances induced by ]1" H2 

and ]]. H,- The question of which other simple parameter(s) to use to determine 

t(2)(A), or whether indeed such a parameter exists, is entirely open. 

We now give an example showing that (1.3) is optimal. Take A = {a symmet- 

ric; IlalI~ _< 1}. Thus, for a e A, 

i,j<n i<n 

and thus t(2)(A) _< n. 

PROPOSITION 1.2: For some constant independent o[ n, we have 
(i) logY, (A, ½) >_ cn 2, 

(ii) logN2(A, cv/'n) >_ cn 2. 
Thus for a = 1/2, a(log N,(A, a)) 1/2 is of order t(2)(A) while for a = c v ~  , 

a(log N2(A, a ) ) ' / '  is of order g(2)(a). 

Proo£" (i) By volume considerations, N,(A, 1/2) _> 2 "("-a)/2. 

(ii) We give a simple probabilistic proof. Observe first that  we can drop the 

requirement that A consists of symmetric matrices, by using the map that asso- 

ciates to each n × n matrix a the 2n × 2n matrix 

0 a (o0) 
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Consider an independent doubly indexed Rademacher sequence (ei,j)i,/<, (i.e. 

P(ei,j = 1) = P(ei,j = -1)  = 1/2). Consider h, h' • R n. Then, by the subgaus- 

sian inequality P([ ~ eizil ~_ t )  ~ 2 exp(-t2/2(~"~ x~)), we see that 

(1.6) P I E h ih~ , i , j l>t  <2exp  
i , j<_ .  - 211hl l~l lh' l l~ 

LEMMA 1.3: (See e.g. [P] p. 56.) There exists a subset Z of R", such that card 

Z < 5", Z C 2B, B C conv Z, where B denotes the euclidean ball of R n, and 

cony Z the convex hull of  Z. 

Thus, since card Z _< 5" 

1 
P(Vh, h' e Z, I ~ hih?i,~l <_ 16V~) _> ft. 

i,j<_n 

Thus it follows that 
1 

P(ll(ei,j)LI, < 16v~) > ~. 

Consider now a family T/i,j, 1 < i , j  < n, where 7?i,j = +1. Then (]ei,j -yidlz)i , j<,  

is a sequence of independent random variables taking the values 0 and 4 with 

probability 1/2. Recentering, the subgaussian inequality implies 

P (E ) [ei,j -- TIi,j[ 2 ~_ n 2 < 2exp - - -  
\ i , j<,  - 8 

So one needs at least ¼ exp n2/8 balls of radius n for the norm II" I12 to cover 

II(~iAII, < 16v/K} c 16x/KA. Thus at least ¼ expn2/8 balls of radius 

v/-n/16 are needed to cover A. I 

We discuss in more detail the methods and the organization of the paper. 

Consider another sequence (g~)i_<, of independent N(0,1) variables, independent 

of (gi)i<_,. We first "decouple" the chaos and set 

~(A) = Esupl  ~ ai,jgig~l. 
aEA i,j(_n 

A symmetric bilinear functional Q(x, y) satisfies 

4Q(z, y) = Q(z + y, x + y) - Q(z - y, z - y). 
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Together with the fact that  (gi T g~)i<_n is distributed like (v~gi)i<h, this implies 

that  ~(A) _< e(2)(A). So it is enough to prove (1.3) and (1.4) when ~(2)(A) is 

replaced by ~(A). 

It is very tempting to look at the decoupled chaos 

as  

ai,jgi(w)g~(w') 
i,j<n 

j < n  i<n 

so that,  conditionally on w, this is a Gaussian random variable. Marcus and Pisier 

have proved a Sudakov-type minoration property for p-stable processes that  relies 

on the fact that  these variables are conditionally Gaussian [M-P]. In the p-stable 

case, an essential ingredient is that the random distance d~ associated to this 

conditionally Gaussian process has the property that P(d~(s,t) < ~) decrease 

very rapidly for e ---} 0; this property is also crucial in the work that followed the 

work of Marcus and Pisier, e.g. IT2]. Unfortunately this property fails in the 

case of chaos, and another approach is needed. The essential idea is contained 

in an important result of local theory of Banach spaces due to A. Pajor and 

N. Tomczack-Jaegermann (following groundbreaking work of V. Milman). This 

is an improvement of Sudakov's minoration that, roughly speaking, states that 

the covering provided by (1.1) "needs only about (t(A)/a) 2 dimensions". The 

version of this principle that we need is explained and proved in section 2. In 

section 3, we set up some (elementary) machinery. In Section 4 we prove (1.3). 

The principle of the proof is to find a set A' of N x k matrices, when k is of 

order (g(A)/a)2,~(A ') of order g(A), and N2(A,~) < N2(A',a/2). Reiterating 

the operation reduces to the case of k x k matrices, where the result follows from 

trivial volume considerations. In section 5, we prove (1.4). The proof uses a 

similar principle, but it is more delicate. 

2. Random operators 

For clarity in the proofs (and to avoid writing many triple sums) it will be useful to 

use somewhat more abstract notations than done in the introduction. Consider 

a finite-dimensional Hilbert space H; we denote by 7H its canonical gaussian 

measure; if (ei)i<n is a basis of H,  7H is the law of ~/<,~ gici. For x E H,  we 
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have 

II~II~ = fn(~,">2d'~n('°). (2.1) 

It will be convenient to denote by w, ~, O (possibly with lower indexes) random 

variables valued in various finite dimensional Hilbert spaces G, H, R ~. It will 

always be assumed that when w(resp. ~, 0 , . . . )  is valued in H,  its law is 7H; and 

that all of these variables are independent. Thus we will write (2.1) as 

(2.2) II~II~ = E<~, ~)2. 

Consider now k > 0, given, and an independent sequence 01 , . . . ,  Ok of r.v. 

distributed like 0. Central to this paper is the consideration of the random 

operator T o from H to R k given by 

T°(z) = -~((z,01),..., (x,0k)). 

For a subset A of H, we set g(A) = E supaeA I(a, w)]. A first important property 

of T e is as follows. 

PROPOSITION 2.1: E(g(Te(A))) < g(A). 

Proof: Consider a r.v. ~ valued in R ~ and distributed like 7 ~ -  Thus, by 

definition 

£(Te(A)) = E~ sup I(T°(a), ~)1. 
a6A 

Here (as well as in the rest of the paper) E~ denotes expectation with respect to 

~. Using the Fubini theorem we get 

E(g(TS(A))) = E{Es sup I(TO(a), ~)1- 
aeA  

We denote by ~1, . . . ,  ~k the components of ~. Then 

1< > 
i<k 

Since, conditionally on (, ~ i < k  (iOi is distributed like I1(110, we have 

II~IIE su ,,a 0,, )I~)I~:A~ E, supl(TS(a),()l=~ oa PAI~ , )l= ~ , ," 
a6A 
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The conclusion follows from 

EH~II _< (EII~II2) ~/2 = E ( ¢ )  2 = v ~ .  . 
\ i ~ k  ] 

We denote by K1, K2 , . . .  universal constants. When there is no need to track 

the constant, we denote it by K (so the value of K may change at each occur- 

rence). The fundamental property of T ° is expressed in the following result. 

THEOREM 2.2:  There exists a universal constant K such that, given a set A C H,  

the following event 

l(A)'~ 
(2.3) vx,  y ~ A, IIx - ~ll < K ]lT°(x) - T°(~)ll + -~-] 

has probability > 1 - 2e -~. 

If we take y = 0, we see that Ilxl12 -- Kt(A)/v~ whenever Tf fx )  = 0. We thus 

recover the theorem of A. Pajor and N. Tomczak-Jaegermann that the sections 

of A by a random subspace of H of codimension k have a diameter of order 

£(A)/vfk.  It could however hardly be said that Theorem 2.2 is an extension of 

this result, since the proofs are identical. Our contribution here lies rather in the 

recognition that  Theorem 2.2 is the correct formulation for our purposes. 

For completeness we will give the proof of Theorem 2.2. We will follow the 

approach of [P], Theorem 5.8 (translated in our language). 

We start with an elementary lemma. 

LEMMA 2.3: Given x E H, we have, for u > O, 

P([[T°(x)[[ _< u[[x[[) _< (eu2) k/2. 

Proof." By homogeneity we can assume [[x][ = 1. Then [[T°(x)[[ 2 is distributed 
k 2 like ( l /k )  ~i=1 gi" For every A > 0, 

Eexp  -A g = (Eexp(-Ag~))* --- 1 
i=l 

Therefore, 

k 

[ 1 ,~ k/2 
exp(Au2). 
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The conclusion follows by taking A = k/2u 2. | 

Before we turn to the crucial point, let us recall one convenient form of the 

"concentration of measure" phenomenon for Gaussian measures [P], p. 47. If ~0 

is a semi-norm on H,  and o = suPllhll<l ~0(h), then 

t2 
(2.4) P(I~@) - E~(°~)I > t) < 2exp 2o 2. 

(The use of the best constant in the exponent is essentially irrelevant.) 

LEMMA 2.4: For k > l,  t > O, we have 

\aEA -- ~ + t  _<5 k e x p \  8D 2j  

where V = sup{llall; a ~ A}.  

Proo£" By Lemma 1.3, there exists a subset Z of R ~ with card Z _< 5 k, consisting 

of vectors of length _< 1, such that 

IlYe(x)ll < 2 sup I(YS(x), h)l. 
hEZ 

Thus it suffices to show that for every h E Z, Ilhll _< 1, we have 

l(A) u ( k=2 
(2.5) P(sup.cA I(TS(a)' h)l > - ~ -  + ~)  _< exp \ -  8 - -~ /  " 

As observed in the proof of Proposition 2.1, supa~A ](Te(a), h)l is distributed like 

(1/V~)sup,eA I(a,w)l. So (2.5) follows from (2.4). | 

We now conclude the proof of Theorem 2.2. We set e = e (A) / v~ .  By Sudakov's 

minoration 1.1, we can find a subset S of A of cardinality < exp K02k such that  

the bails of radius e centered at S cover A. Set A - A = {a - b; a, b E A) and 

a '  = {~ ~ A - A; I1~11 -< ~} 

so that  e(A') < 2e(A). If we use Lemma 2.4 for A' instead of A, and for t = 5e, 

we see that / \ 

sup IlTe(a)ll _> 9e~ _< 5 k exp(-3k)  _< P e - k .  

\aEA'  / 
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Consider now a number u0 fixed such that e2K02(eu20)l/2 < 1/e. It follows from 

Lemma 2.3 that 

P(Vs,t • S, IIT'(s - t ) l l  > uolls - t l l )  >_ 1 - e -k.  

It remains to show that (2.3) occurs whenever 

(2.6) vs, t • s,  I I T S ( s - t ) l l  >_ u o l l s - t l l ,  

(2.7) sup IITS(a)ll < 9, .  
a r i A  ~ 

Indeed consider x, y • A. We can find s, t • S such that IIz - sll < ,, I lu -  t l l<  e. 
Thus z - s, y - t • A'. By (2.7) we have 

liT°( x - ~)11 < 9~; IITO(y - t)ll < 9~. 

On the other hand, by (2.6) we have 

Thus 

IIs - tll _ ~0  IITe(s - t)ll. 

IIx - ull -< 2~ ÷ I1~ - tll _ 2~ ÷ x--IIT'(s - ~)11 
uo 

This completes the proof. 

3. T e n s o r  p r o d u c t s  

| 

_< 2e -4- 1 ( 1 8 e  -4- IIT'(x - u)ll). 
Uo 

Consider two finite-dimensionM Hilbert spaces G, H and the space B(G, H) of 

bilinear forms on G × H.  For a E B(G,  H) ,  we set 

(3.2) Ilall, = sup{la(h',h)l: IIh'll < 1, Ilhll _< a}. 

Thus, if G = R ~, H = R n, a = (ai,j)i<kd<,,, we have Ilall2 = ( ~ , j  a s ~,/2 
_ _ i , j ~  • 

Given z E G, we consider the operator Vz (resp. Wz) from B(G, tt) (resp. 

B(G, Rk)) to H(resp. R k) given by 

(3.3) Vy E H, (V,(a),y) = a(z,y) 
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(resp. 

(3.4) Vy E R k, (Wx(a),y) = a(x,y).) 

Given an operator T : H -4 R k, we consider the operator T from B(G, H) to 

B(G, Rk), given, for a E B(G, H), x E G, y E R k by 

(3.5) T--(a)( x, y) = a(x, T ' (y)  ), 

where T t is the adjoint of T. 

LEMMA 3.1: For x E G we have 

(3.6) Wz o T = T o Vx. 

Proof." Consider a E B (G , H) ,  y E H. Then, by definition of Wz, by (3.5), and 

by the definition of Vx we have successively 

(W~ o T(a), y) = T(a)(x, y) 

= a(x, T '(y))  

= (V~(a), T'(y)) 

= (T o Vz(a),y). I 

For A C B(G, H),  we set 

= E sup  la( , 
aEA 

LEMMA 3.2: "£(A) = E£(Vw(A)). 

Proof: This is just Fubini theorem and the definition of V~: 

~(A) = E~(E~ sup la(w, ~)]) 
aEA 

sup 
beVy(A) 

= Ew(~(V~(A))). 

In a similar way, for H = R", we have ~(A) = E(i(W~,(A))). 



Vol. 79, 1992 GAUSSIAN CHAOS PROCESSES 217 

LEMMA 3.3: E-~(~(A))  <_-~(A). 

Proof: Using successively Lemma 3.2, Lemma 3.1, the ~b in i  theorem, Propo- 

sition 2.1 and Lemma 3.2 again, we have 

E~(~-° (A)) = EoE~(g(W~(T-° (A)))) 

= EaE~(£(T°(V~(A)))) 

= E~Eo(~(Te(V~(A)))) 

< E~(£(V~(A))) 

= ~(A). z 

We finish this section with a few simple facts. 

The following is well known, and is a weak version of the integrability property 

of Gaussian measure. 

LEMMA 3.4: Consider a semi-norm ~a on H. 

Suppose that P(~(~) <_ M) > 1/2.  Then (E~2(~))I/2 <_ KM.  

LEMMA 3 . 5 :  

(a) P(HY~(a)ll >_ 3[lal[~) _< 1/9 

(b) If P(llV~(a)J I < M)  > 1/2, then Ilal12 _< K M .  

Proof." (a) Follows from the fact that Ea2(w,~) = [lall~, so that, by the Fubini 

theorem, 
[[a[] 2 = Ea2(w, ~) = E~(E~a2(w, ~)) 

= E~(E¢(V~(a), ~)2) 

= E~(llV~(a)ll2). 

(b) We observe that x --, IIV~(a)ll is a s e m i - n o ~  on G; so the result follows from 

Lemma 3.4 and (a). 

4. The  ~2 n o r m  

The basic fact is as follows. 

PROPOSITION 4.1: There exists a universal constant K with the following prop- 

ertr. Consider a subset A orB(G, H ). Consider k >_ 3 such that e / K >_ ~( A ) / Vrk. 

Then we can find a subset A' orB(G, R k) with the following properties: 

(4.1) ~(A') _< 2£(A), 

(4.2) N2(A, e) < N2(A',  e /K).  
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Proof." Given to, consider the following event S~ (that depends on 0 only): 

(4.3) Vx, y E V~(A), ,,x-y,,<Kz(,,T'(x)-T'(y),,+£(V~--~kA))). 

It follows from Theorem 2.2 that (for a suitable K)  we have P(Sw) > 1 - 2e -~. 

Using the Fubinl theorem, we see that if we set 

a = {0; P (0  ~ S~) _> 1 - 6e-k} ,  

we have P(R) >_ 2/3. On the other hand, from Lemma 3.3, we see that  

P(£(T-e(A)) <_ 2£(A)) > 1/2. 

Thus we can find 8 such that ~(Te(A)) < 2£(A), and P(S) > 1 - 6e -k >_ 3/4, 

where S = {to; 0 E S,,}. We fix such a 8, and we set T = T e, A ~ = T-e(A). We 

thus have ~(A') _< 2~(A). 

We now prove that,  for some universal Kz, 

(4.4) Va, b E A, I la -b l l2  < K , ( l l ~ ( a ) - T ( b ) l l 2  + i ( A ) / d k ) .  

Indeed, from Lemma 3.5(a), we see that 

P( I IW,  o(T(a)  - T--(b))ll < 311T--(a) - T(b)l l )  _> 8/9. 

On the other hand, for to E S, and using Lemma 3.1, we have from (4.3) that  

l i v e ( . )  - V~(b)ll < K(IIT(Vo,(a)) - T(V~,(b))II + ~(Vo,(A))/d-k) 

= KCIIW, o('~(a) - ~(b))l l  + ~(Vo,(A)) IJ-£) .  

On the other hand, by Lemma 3.2 we have 

P(t(V~,(A)) < 8~(A)) > 7/8. 

Thus, with probability >_ 1/2, we have 

IIV~(a - b)l I _< K(311T(a ) - T--(b)l[= + 8~(A) /v~) .  

Together with Lemma 3.5(b), this proves (4.4). Clearly (4.2) follows from (4.4) 

if K >_ 2El (since ~(A)/v~ <_ ~/K). Z 
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We are now ready to prove (1.3). Consider A C B(G, H). If we apply Propo- 

sition 4.1, and then apply it again after exchanging R k and G, we see that  there 

exists a universal constant K2, such that if e/K2 > ~(A)/x/k, k > 3 then we can 

find a set A" C B(R ~ x R k) such that 

(4.5) ~(A") <_ 4~(A), 

(4.6) N2(A, e) <_ N2(A", elK2). 

The ball (for I1" I1~) of radius 8e in B(R k x R k) can be covered by at most exp(Kk 2) 

balls of radius e/K2. Thus if one chooses k of order K~(A)2/e 2, we see that  

(4.7) N2(A, e) _< exp ~. e4 ] 

Set h(e) = sup{N~(A,e);£(A) < 1}. It follows from (4.7), since N2(A",8e) = 
N2(A"/4, 2e), that 

(4.8) h(e) < (exp ge-4)h(2e). 

We now observe that  for a • A we have Ela(w; ~)1 -< ~(A). Since all the 

moments of a chaos are equivalent (see e.g. [B]) we have IlaH2 = (Ea(w, ~)2)1/2 < 
Ks£(A); thus h(e) = 1 for e > Ks. It then follows from (4.8) that h(e) < 

exp K e -4. 

5. T h e  o p e r a t o r  n o r m  

For a set A C B(G, H), we set 

inCA) = E~ sup sup la(g, 01- 
aeA I1~11<1 

PROPOSITION 5.1: There exists a tmiversaJ constant K with the follov6ng prop- 
=ty. Consider ~ > O, A C B(G, H), and k sum that m (A ) / v~  < ~ / g .  Then 

we can £nd A' C B(G, R k) that satis£es 

(5.1) ~(A') <_ ~(A), 

(5.2) N~(A, a) < N~(A', a/2K). 

Proof." Consider the subset B of H given by 

B = iVy(a); a • A, llgll -< i}. 
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Clearly re(A) = £(B). Lemma 3.3 and Theorem 2.2 show that we can find 8 such 

that,  if we set A' = T-~(A), T = T °, then (5.1) holds, and moreover 

( m(A)'~ 
vu, ~ e a ,  ilu - vii __ K liT(u) - T(~)tl + v ~  ]" 

Using this for u = V~(a), v = Vg(b), and using Lemma 3.1 we see that 

m(A)'~ 
liVe(a) - v.(b)ll _< K IIW.(~(a)) - W.@(b))ll  + v ~  ] 

m(a)~ 
< g ] lT(a) -T(b) i l e  + V ~  ] 

so that 
m(A)~ 

l i e -  bile < g liT(a) - T(b)lle + ,¢~ ] .  

This obviously finishes the proof, l 

Consider a semi-norm ~ on G. Let b = suPllgll<l ~(g). The theorem of Hahn-  

Banach shows that ~(g) >_ ](z,g)] for some z e G, ]]zl] = b. Thus 

El(z,~)l = ~/211z[I ___ E~,(~)  

and thus 

(5.3) b <_ ~2E~(w)  <_ 2E~0(w). 

Using this for the functional ~(g) = sup~eA [a(g, ~)], we get that 

sup sup la(g,~)] _< 2E~ sup ]a(w,~)]. 
[[g][_~ 1 aEA aEA 

This shows that re(A) <_ 2~(A). 

Using this observation, as well as two times Proposition 5.1 we get the follow- 

ing: 

PROPOSITION 5.2: There exists a universM constant K with the following prop- 
erty. Consider a > O, n C B(G, H), and k suck that g(A)/v~ <_ a / g .  Then we 
can find A" C B(R ~ x R k) that satisfies 

(5.4) ~(A") _< 4g(A), 

(5.5) We(A, a) <_ Ne(A", a/K). 

Observe that we still need of order (~(A)/a) 4 dimensions, so further reductions 

are necessary. These reductions will be made using Proposition 5.1; but we need 

to reduce the value of re(A) by breaking A in pieces. 
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PROPOSITION 5.3: There exists a universal constant K with the following prop- 

erty. Consider A C B ( R "  x Rq) and k >_ 1. Then we can cover A by translates 

o f  sets (Ai)i<_N SUCA1 that 

(5.6) 

(5.7) 

(5.s) 

Proof." 

g(A,) < 2g(A), 

g-g( A ) 
E¢ sup sup [a(g,~)[ < 

aeA~ Ilgl]_<l -- V ~  ' 

N < ( K v / ~ )  qk. 

In order to avoid introducing new notation, we will replace (5.7) by 

K-~(A) 
(5.9) E~, sup sup ]a(w, h)[ < - -  

aEAi ][h[[<a --  

As in the proof of Proposition 4.1, with G = R m, H = Rq we can find 0 

such that setting T = T °, A' = T(A), we have g(A') < 2~(A), and that with 

probability > 1/2, we have, for all a, b E A, 

- -  - -  g (A)~  
(5.10) IIV, o(a) - V,,,(b)l I <_ K(IIW, o(T(a)) - W,o(T(b)) H + - - ~ - , .  

Consider now a set C C T(A) ,  and let D = "T-a(C)NA.  It follows, from (5.10) 

and (the proof of) Lemma 3.5(b) that 

E. ,  sup sup l a@,  h) - b(w, h)l 
a,bED Ilhll_<l 

~(A) )  
_< g Ew,,~ecSUp II~'ll<lsup [u(w, h') - v(w, h')l + - - ~ - ]  . 

Thus we have reduced to the proof of the following statement. 

B(R  '~ x Rk), we can cover A' by s e t s  (Ai)i<_N such that 

E,o( sup sup [u(w, h') - v(w, h')[ ) < g(A'_._~) 
u,veA~ Ilh'll_<l 

If A' C 

when N satisfies 

We observe that, if IIh'l[ < 1, 

N < (K¢-~)  m~. 

I~(~, h') - v(~, h')l ~< I1~11 IN - vii,. 
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Since E~llwII < (EIIwlls) 1/2 --  m 1/2, it suffices to take for the sets A, balls for 

I1" II, of radius _< ~(A')lv/--m-k. We observe that By (5.4) we have 

Ilall, = s u p  s u p  la(g, h)l  _< sup 
• ca .CA Illll<l,llMl_<l 

so the result follows from the (well known) following lemma. 

LEMMA 5.4: Consider a convex balanced set U in R n. Then U can be covered 

by at most (1 + 2 /a )  n trandates o f a U  centered on U. 

We now denote 

N(m,q ,a )  = sup{N,(A,a~(A)); A C B ( R "  x R')}. 

PROPOSITION 5.5: There exists a universa/constant K with the following prop- 

erty. / f p  _< 1 /a  s, then 

N(m,q,  c x ) < - ( K v ~ ) q ' N ( m , ~ , K ) .  

Proo~ Consider A C B(R m x Rg). We first use Proposition 5.3 for k = p. It 

thus suffices to show that 

N, (A, _< N(m,S,:ImLo, IK) 

whenever 

re(A) = E~ sup sup la(g, ~)1 < K~(A) 
aeA I l l l lS1 - 

We coax find 
k <~ Ko~-2 

P 
such that 

m(A)IV~ < K~(A)/v / -~  < a~(A)/2Ks 

where Ks denotes the constant of Proposition 5.1, so the clmm follows from 

Proposition 5.1. II 

We now proceed to the proof of (1.4). Consider Pl _< "'" < Pr < a - s .  Set 

Ki+(0-1)(,-s).,-1 a -2  for 8 < r. Then, by iteration of Proposition ql = rn~ q, = vs-1 - 
5.5, we get 

( K l + r ( ~ - l )  ~ )  
N ( m , m , a )  <_ H ( K q , p , ) " " N  m, p2a2 , ~ , .  . 

8~r 
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We specialize now to the case where ps is (of order) u s for some u > 1. Then for 

s < r, we have qaPs < K r2u~-2, so that 

_< m ,  • 

Take now u = a-2/"; observe that  by Lemma 5.4 we have 

r 2 N (m,K l+r(r-1),-~) < (K rOt-l) K m .  

So we get (for a new constant K)  

N ( m , m , a )  <_ ( K a - ' )  K ' ' ( a - ' - ' / " + " ) .  

We recall that ,  by (5.5), we have 

N(n, n, a) <_ N(m,  m, a /K) ,  

where m < K a - 2 ;  so, taking r of order (log ol) 1/3, we get 

N(n, n, a) <_ exp(Ka  -2 exp K(log a-1)2D).  

This proves (1.4), where ~(x) = K exp K(log x) 2/3 . 

Remark: (1) This proof is a good illustration of the power of the "iteration 

method".  While we start with a very weak principle (Proposition 5.3), the 

method yields a reasonably sharp result. 

(2) It is possible (and even likely) that a more clever handling of this iteration- 

type argument would yield a smaller growth of the perburbation term; but in 

order to get rid entirely of this term, a radically new idea seems to be needed. 
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